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Abstract: The enantiospecific synthesis of the oligomycin B degradation product 2, corresponding to the C19-
C34 spiroketal portion, has been achieved by sequential coupling of the C19-C21, C22-C27, and C28-C34 subunits,
establishing the absolute stereochemistry of oligomycin B.

Oligomycins A (la), B (1b), and C (1c¢) were isolated in 1954 from a strain of Streptomyces
diastatochromogenes.! They are antifungal antibiotics! and potent, specific inhibitors of oxidative

phosphorylation.2 The structure of 1 was clucidated by chemical degradation studies and an X-ray
crystallographic analysis,3 but the absolute stereochemistry has not been determined. We wish to describe here
the enantiospecific synthesis of the oligomycin B degradation product 2, corresponding to the C19-C34
spiroketal portion of 1b, by sequential coupling of the C19-C21Wittig salt, the C22-C27 aldehyde, and the

C28-C34 organotin compound. This result elucidated the absolute stereochemistry of 1b as depicted below.4
MeMe R' Me Me Me

1a : Oligomycin A (R' = OH, R = Hy)
1b : Oligomycin B (R' = OH, R? = Q)

1c : Oligomycin C (R’ = H, R? = Hy)
Our synthesis began with readily available epoxy-alcohol 3 (94% ee)> which was subjected to the
regioselective epoxide-opening® with Me,CuLi to afford a 4.5 : 1 mixture of 47 and its regioisomer. Since this
mixture could not be separated, it was subjected to NalOy4-oxidation and from the resulting mixture the inert 4
was easily isolated by silica-gel column chromatography in 66% yield. Debenzylation of 4 followed by
regioselective acetalization afforded alcohol 57 in 75% yield. Swern oxidation (i-Pr,NEt workup)8 of § gave
the crude aldehyde. The C25 and the C26 stereocenters? were then introduced with 15 : 1 selectivity by
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(a) Me,CulLi, ether, -40°C, 1 h, then NalQ,, aq THF, 1, 12 h, 66%; (b) Ha, Pd(OH),, MeOH, rt, 2 h, 92%; (c) Me,C(OMe),,
CSA, CH,Cliy, 1, 20 h, 82%; (d) (COCI),, DMSO, CH.Cly, -78°C, 40 min, then +PrpNEt, -78 to 0°C, 15 min; (e) A, THF-ether,
-78°C, 1 h, 50% (2 steps); (f) MPMCI, NaH, DMF, rt, 20 h, 55%; (g) OsO,, NMO, ag acetone, rt, 7 h, then NalO4, THF-pH 7
phosphate buffer, rt, 6 h; (h) 1: 1: 1 AcOH-H,O-THF, rt, 15 h; (i) BnOH, CSA, CH.Cl,, i, 15 h, 65% (4 steps); (j) (COCl),,
DMSO, CH,Cl,, -78°C, 30 min, then Et;N, -78 to 0°C, 15 min, 100%.
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(a) B, THF-ether, -78°C, 3 h; (b) 10% HCI-MeOH, MeOH, rt, 13 h; (c) TBDPSCI, imidazole, RO Me
DMF, rt, 14 h; (d) TESCI, |m|dazole DMF, rt, 20 min, 25% (4 steps); (e) dicyclohexylborane, 18: R = MOM
THF, 0°C, 40 min, then HO5-aq NaOH, 40°C, 20 min, 100%; (f) (COCI),, DMSO, CH,Cl,, 19: R=SEM
-78°C, 15 min, then E3N, -78 to 0°C, 20 min, 80%,; (g) 7-BuaSnH, LDA, THF, 0°C, 15 min,
then 17, -78°C, 40 min; (h) to 18: MOMCI, Pr,NEt, CH,Cly, 1t, 19 h, 75% (2 steps).
to 19: 2-(trimethyIsilyl)ethoxymethy! chloride (SEMCH), -ProNEt, CH,Cly, rt, 15 h, 72% (2 steps).
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(a) n-BugNF, MS 4AP, N,Ndimethylpropyleneurea, 45°C, 1 d, 60%,
(b) TBDPSCI, imidazole, DMF, 40°C, 5 h, 70%.
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coupling of this aldehyde with (Z)-crotyldiisopinocampheylborane (A), prepared from B-(-)-
methoxydiisopinocampheylborane.10 The stereochemistry of the major diastereomer 6,7-1112 isolated in 50%
yield from 5, was verified by conversion to 8.13 Protection of 6 [4-methoxybenzyl chloride (MPMC), 55%
yield] followed by cleavage of the terminal olefin of the resulting 77 {OsO4-4-methylmorpholine N-oxide
(NMO), then NalOy4] gave aldehyde, which was subjected to deacetalization and subsequent benzyl
glycosylation to afford 87 in 65% overall yield as a 3 : 1 mixture of & : } anomers, respectively.13 Swern
oxidation of 8 gave the C22-C27 aldehyde 9 in quantitative yield.

The C19-C21 Wittig salt 10,7 prepared from (2R,3R)-3-ethyl-1,2,4-butanetriol, 14 was treated with n-
BuLi in THF and the resulting ylide was coupled with the above aldehyde 9 to afford 117 in 73% yield.
Further elaboration of this single (Z)-isomer 11 into the C19-C27 lactone 127 was accomplished in 57%
overall yield by selective hydrogenolysis!3 and hydrogenation followed by PDC oxidation of the intermediate
lactol.

The synthesis of the C28-C34 organotin compound 18 or 19 began with aldehyde 13.16 Treatment of
13 with the Brown's reagent B, prepared from B-(+)-methoxydiisopinocampheylborane,10 afforded a 3 : 1
mixture of 14 and the other syn isomer.}7 Deprotection of this mixture gave the desired diol 15, separable
from its stereoisomer by column chromatography, which was protected as its disilyl ether to give 167 in 25%
overall yield from 13. Hydroboration of 16 with dicyclohexylborane followed by Swern oxidation afforded
aldehyde 17 in 80% yield. Finally, addition of n-Bu3SnLil8 to 17 followed by etherification furnished the
C28-C34 subunit 18 or 19 in 75% yield or 72% yield (each was a 1 : 1 mixture at the C28-position).

The coupling of the C19-C27 and the C28-C34 subunits was realized by lithiation18 of 18 or 19 with
n-Buli followed by immediate addition of lactone 12 to afford the adduct 20 (75%) or 21 (50%). Each
adduct was subjected to selective desilylation and cyclization to afford 227 (88%) or 237 (96%). Both 22 and
23 consisted of a 1 : 1 separable mixture at the C28-position. We believe that these compounds would be
useful synthetic intermediates for the total synthesis of oligomycins. Selective deprotection!9 and re-silylation
of one epimer of 23 furnished 24, which was transformed to 27-20 by the four-step sequence: (1) TsOH,
MeOH, 1t, 4 h; (2) NalO4, THF-pH 7 phosphate buffer, 1t, 1 h; (3) NaBHy, MeOH, rt, 0.5 h; (4) DDQ, aq
CH,Cly, rt, 20 min,15 75% overall yield. For securing the authentic sample of 2, the degradation study of
oligomycins was performed. 3421 Commercially available oligomycin A, B, and C mixture (A : B: C=75:15
: 10, Aldrich) was subjected to silylation (TBDPSCI, imidazole, DMF, 33°C, 88 h), ozonolysis (O3, EtOAc,
-75°C, 5 min, then NaBH,, THF, -70°C to rt, 21 h), and ester cleavage reaction (DIBAL, CH,Cl,, -75 to
-40°C, 1 h). The obtained 2 (12% yield) consisted of a 10 : 1 separable mixture at the C28-position.20 The
synthetic 2 was identical in all respects ('{H NMR, IR, [a]p,22 and TLC mobilities) with the naturally derived
2 (the major one), which implies that the absolute stereochemistry of oligomycin B (1b) is as depicted.
Further efforts to complete the total synthesis of oligomycins are now in progress.

Acknowl_edgment: We would like to thank Emeritus Professor Mitsuhiro Kinoshita (Keio University) for
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